Data Mining with Possibilistic Graphical Models

نویسندگان

  • Christian Borgelt
  • Rudolf Kruse
چکیده

Data Mining, also called Knowledge Discovery in Databases, is a young area of research, which has emerged in response to the flood of data we are faced with nowadays. It has taken up the challenge to develop techniques that can help humans discover useful patterns in their data. One such technique—which certainly is among the most important, as it can be used for frequent data mining tasks like classifier construction and dependence analysis—are graphical models and especially learning such models from a dataset of sample cases. In this paper we review the basic ideas of graphical modeling, with a focus on possibilistic networks, and study the principles of learning such graphical models from a dataset of sample cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphical models - methods for data analysis and mining

The best ebooks about Graphical Models Methods For Data Analysis And Mining that you can get for free here by download this Graphical Models Methods For Data Analysis And Mining and save to your desktop. This ebooks is under topic such as data mining with graphical models pdfsmanticscholar data mining with graphical models borgelt data mining with graphical models springer data mining with poss...

متن کامل

Possibilistic Networks: Data Mining Applications

The explosion of data stored in commercial or administrational databases calls for intelligent techniques to discover the patterns hidden in them and thus to exploit all available information. Therefore a new line of research has recently been established, which became known under the names “Data Mining” and “Knowledge Discovery in Databases”. In this paper we study a popular technique from its...

متن کامل

Learning possibilistic graphical models from data

Graphical models—especially probabilistic networks like Bayes networks and Markov networks—are very popular to make reasoning in high-dimensional domains feasible. Since constructing them manually can be tedious and time consuming, a large part of recent research has been devoted to learning them from data. However, if the dataset to learn from contains imprecise information in the form of sets...

متن کامل

Mouse Movement and Probabilistic Graphical Models Based E-Learning Activity Recognition Improvement Possibilistic Model

Automatically recognizing the e-learning activities is an important task for improving the online learning process. Probabilistic graphical models such as Hidden Markov Models and Conditional Random Fields have been successfully used in order to identify a web user activity. For such models, the sequences of observation are crucial for training and inference processes. Despite the efficiency of...

متن کامل

Learning possibilistic networks from data: a survey

Possibilistic networks are important tools for modelling and reasoning, especially in the presence of imprecise and/or uncertain information. These graphical models have been successfully used in several real applications. Since their construction by experts is complex and time consuming, several researchers have tried to learn them from data. In this paper, we try to present and discuss releva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004